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NOTATIONS

C Moisture contents (by weight)

Comp. Compressive

D Diameter of the hole

E Distance of the center of the hole from the
nearer edge

Fij Tensor polynomial failure criterion coefficients
dependent upon the ply strengths in different
directions

f 1 (P/No)Exp/(P/No)predicted (Dry)

f 2 (P/No)Exp/(P/No)predicted (Moist)

h Thickness of the laminate

L Length of the laminate

N Uniaxial applied stress (Figure 1)

N' Uniaxial applied stress (Figure 1)

No  Strength of unnotched laminate in tension

Nc Compressive strength of unnotched laminate
0

Ns  Shear strength of unnotched laminate
0

NT Net tension

P Uniaxial applied stress (Figure 1)
Predicted strength of the notched laminate

Qij Modulus matrix

Si Strength of ith ply at the jth element
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Scf Stress concentration factor

AT Temperature difference

W Width of the laminate

x Strength of the strongest ply at the it h element

(x,y) Cartesian coordinate axis

(E , yxy) Strain components

(a xyTxy Stress components

a Uniaxial applied stress
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SECTION I

INTRODUCTION

With the advent of composite materials and their enormous use in

highly stressed lightweight constructions, it has become necessary to

have a deep insight into the failure of composite bozlted joints. There

have been very few investigations towards the failure analysis of bolted

joints. Some of the papers in this area have been reported in Reference

1, which uses a finite element technique and the average radial stress

over a characteristic distance d (from the hole boundary) as a stress

level to predict the failure strength of the laminate. This parameter

d is considered as a material property. Recently Garbo and Ogonowski

(Reference 2) used the characteristic distance concept of Whitney and

Nuismer (Reference 3) and Wu (Reference 4) to determine the strength of

mechanically fastened composite joints. According to this hypothesis

they chose a characteristic distance d away from the hole and used the

stress level at this distance to compute the failure loads of different

laminates by the Tsai - Hill criterion (References 5,6). The laminate

failure was assumed to occur when the first ply fiber fails. The analyti-

cal results compared with experimental data in this report tended to favor

this technique.

The idea behind taking the average stress over a fixed range or an

effective stress to compute the failure strength of the notched laminate

emerged from the fact that the maximum theoretical value of the localized

stress around the hole is higher than the experimental value. The calcu-

lated stress concentration factors apply mainly to ideal elastic materials

and depend upon the geometry or form of the abrupt change in section.

However, in applications involving real materials, the significance of

a stress concentration factor is not indicated satisfactorily by the

calculated value. It is found through experience that the effective stress

value that indicates impending structural damage of a member depends upon
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the characteristics of the material and on the nature of the load and

the geometry of the stress raiser. Consequently, the effective value of

stress concentration is obtained by multiplying the nominal stress by an

effective stress concentration factor, which is less than the calculated

stress concentration factor (Reference 7). The determination of effective

stress concentration factor requires experimental data.

The present work is concerned with the investigation of strength

of composite laminates having a through the thickness loaded circular

hole. The hole is assumed to be filled with a rigid core to simulate

the bolted joint situation. The finite element technique coupled with

the classical laminated plate theory has been used in computing the stress

distribution in the laminate. The displacement boundary conditions are

applied to the rigid core to represent load at the bolted joint. Tensor

polynomial failure criterion (Reference 8) has been applied to predict

the ultimate failure strength of notched laminates. According to this

critericn the combination of stresses that causes the lamina failure can

be represented by a surface in stress space i.e.,

F 11 a1 2+F 22 a2 +F 66"6 2+2F 12'1'2 +FI 1 y+F 2a2  ()

where F,s are evaluated from axial, transverse and shear strengths of

the lamina and 01, 02 and 06 are inplane axial, transverse and shear

stress components, respectively, at a point (Reference 9).

Prior to the application of this criterion to a composite laminate,

it is necessary to define how to treat the lamina failure that occurs

before the total laminate failure. There are various ways of treating

the laminate stiffness after lamina failure (Reference 10). In the

present study it has been assumed that laminate fails when last ply

failure occurs at the weakest point.

The tensor polynomial failure criterion (Reference 8) was used to

obtain the failure strength of each ply in the laminate. The failure

2
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strength of strongest ply at the weakest point of the laminate was con-

sidered as the ultimate failure strength of the laminate. Experimental

results are available for a limited number of laminates and show a wide

scatter in strength.

Apart from the failure strengths of the loaded hole laminate, the

present study predicts the possible mode of failure. The different

modes of failure observed in this analysis are given in Figure Al.

1; 3A /1 __.-____ ________ _ 
-

_....



AFWAL-TR-80-40l10

SECTION 11

PROBLEM DEFINITION

Figure 1 shows a laminate with a fastener hole and possible simple

uniaxial loads. The following three combinations of loading conditions

can be investigated:

i. Loaded hole (N' = 0)

ii. Partial load acting at the hole (N' t 0, P t 0)

iii. Free Hole (P = 0)

The loaded hole condition resembles the bolted joint situation and

is of great practical importance in engineering applications. The empha-

sis of the present investigation is on this condition, though the other

two conditions are dealt with for the purpose of comparison between the

predicted strength and already available experimental strength of lami-

nates. There exist no reliable close form solutions for the stress

analysis of the laminate with loaded hole conditions. Finite element

technique has been utilized to conduct the stress analysis of the lami-

nate. To simulate loaded hole condition, various boundary constraints

were tried in the finite element analysis. It was found that the boun-

dary conditions with zero radial displacement along the semicircular

boundary in contact with the bolt and known applied tensile load at the

opposite plane edge represent loaded hole conditions.

1. FINITE ELEMENT MODEL

A notched laminate as shown in Figure 1 is under investigation for

stress analysis by the finite element technique, using the NASTRAN com-

puter code. The stress distribution in the laminate is computed by

considering half of the laminate, there-by taking the advantage of

geometric symmetry about x-axis. The half of the laminate is divided

into 372 quadrilateral and triangular elements. The loaded hole condi-

tions were simulated by taking radial displacement along the bolt contact

4
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semicircular boundary as zero and applying known tensile load at the

opposite plane edge. This transpires that the model assumes a rigid

frictionless bolt and the contact surface between the bolt and laminate

is semicircular. Further it was assumed that no lateral pressure was

acting at the laminate. The gross laminate material properties using

the laminated plate theory were used. A finite element grid plot as

obtained during the NASTRAN computations is given in Figure 2. Various

numerical exercises with different finite element grids showed that the

present model is good enough to give acceptable results for all practical

purposes.

2. FAILURE CRITERION

The stress components, obtained by the finite element analysis,

at each point around the hole are used to predict the maximum allowable

tensile stress in individual lamina through the use of tensor polynomial

failure criterion (Reference 9). This yields as many failure strengths

as the ply angle orientations in the laminate under consideration. The

ultimate failure of the laminate is assumed to take place at the weakest

point when the strongest lamina fails. This is illustrated by the follow-

ing example:

Assume that the laminate under consideration has 4 angle ply orienta-

tions and there are 20 elements at each of which the average state of

stress is known to be (01', J21, 0r61) i = 1,2,3--20. The use of stress

components corresponding to each element in the failure criterion yields

four strengths [Sl1, S2 i. S3 1, S41], I l- ,2,--20 one pertaining to each

angle ply. The strongest lamina strength xi for each element is given

by

X =maximum [S i S2', S31., S4 1J

i = 1,2,--20

The ultimate failure strength P of the laminate is assumed to be

given by

P =min. (xi, x2, -- X20 )

4j _ ___ ____ ___ ___ __5
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and the weakest point is in the element to which this value corresponds.

In case there is more than one element having the ultimate strength P,

the element with minimum of second largest angle ply strength will be

considered as the area of failure.

3. LAMINATE MATERIAL PROPERTIES

The analysis of composite laminates is limited to those stacking

sequences which have midplane symmetry, i.e., the ply orientations in

the lower half of the laminate are the reflections of those of the upper

half plies. Such laminates are assumed to behave like homogeneous

anisotropic plates. The procedure of computing the stiffness properties

of multidirectional laminates is described in Reference 11. The effective

modulus of the composite laminate is simply the arithmetic average of

the moduli of constituent plies. For T300/5208 material, the values of

nonzero elements of modulus matrix are given in Table 1 for relevant

laminate ply orientations. The ply strengths of different laminates for

tensile, compressive, and shear loadings are given in Table 2. These

values are calculated using the tensor polynomial failure criterion.

4. NUMERICAL RESULTS AND DISCUSSION

A computer program was written to generate the grid points and ele-

ment topologies for the use in finite element calculations of the problem.

The physical dimensions were taken to be the same as those in Reference

12 with a variation in the diameter D of the hole and are stated in Figure

1. In order to check the finite element model thE stress components at

all the elements for isotropic laminate with a free hole boundary condi-

tion were obtained. Values of a along the line normal to x-axis and

passing through the center of the hole are plotted in Figure 3. For

comparison, the axial stress component ax computed by using the infinite

isotropic plate formulation (Reference 13), with finite width correction

factor is also given. The agreement of results is very good.

6
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It is found that the stress components near the point of stress

concentration vary rapidly. Consequently, the computed average stresses

over the element containing that point are a bit lower than the actual

stress level. Efforts are made to discretize the laminate in such a

fashion that the areas of the elements in the critical region are so

small that the results are very close to the exact values. Since average

stress components over the elements are used in the failure criterion,

the inaccuracy would be transmitted into the failure loads. However,

for all practical purposes, the results are within acceptable limits.

The Appendix explains the procedure of obtaining the notch insensi-

tive strengths of the notched laminates. These are used in all the

diagrams, wherever applicable, to provide the upper limits of the notched

laminate strengths. While conducting the finite element analysis for

this problem we obtain the stress distribution at various points of the

loaded hole laminate. We are more interested in the stress levels at points

around the circumference of the hole which is the region of stress concen-

tration and impending failure. The use of these stress levels in the failure
criterion gives the ultimate failure strength P of the loaded hole laminate.

Figures 4-11 show the predicted strength ratios P/N 0for all the composite

laminates listed in Table 1.

On inspection of the stress components at the weakest point of the

notched laminate, keeping in view the ultimate failure strengths of the

unnotched laminate in corresponding directions, the type of failure mode

can be visualized. Figures 14 demonstrate this aspect for some of the

laminates. In these figures, the values within the parentheses are ulti-

mate failure strengths of unnotched laminates in MPa in corresponding

directions. The dominant stress, contributing to the failure of the

laminate has been underlined. Based on this observation, the modes of

failure are also marked in Figures 4-11.

Experimental results for some of the laminates available in the
literature are presented in the figures. For laminates (0,90 + 45)s and

7
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(0, 90, (±52s the comparison is very good. Figure 4 depicts the

strength ratio P/N0 versus diameter to width ratio 01W for (0, 90, + 45)~

laminate. The experimental results taken from Reference 14, are based

on the proportion transpired by the partial loading of the hole assuming

50% of the load transfer in two fastener hole laminates.

In the case of partial loading, as is shown in Figure 13 for AS-3501

material, the ultimate failure load of a loaded hole laminate is about

66% of the failure load of 0.5 hole load to total load ratio. rhis idea

has been applied in calculating the failure strength of single fastener

hole from two fastener hole experimental failure strength of the laminate.

The other experimental result is taken from Reference 12 and is in the

close proximity of predicted value. The predicted modes of failure are

also the same as experimental observations. In Figure 5, the agreement

between the predicted and experimental strengths and modes of failure is

very good.

In Figures 6 and 8, the predicted strengths are conservative in

comparison to experimental strengths. Probably it is due to the more

nonlinear behavior of the composite laminates (01 + 45)s and (90 + 45)s
when in compression. The predicted modes of failure resemble the experi-

mental modes of failure. No experimental results are available for compari-

son with the predicted strengths of (0 29 902s (+45)2s, (00), and (900) -

laminates for which the strength plots are given in Figures 7, 9, 10, and

11. It is expected that the predicted strengths are conservative, and thus

are believed to be more reliable for design purposes.

Figure 12 shows the variation in ultimate failure strength P of

loaded hole laminates with respect to the diameter to width ratio (D/W).

Predicted modes of failure are also marked for corresponding laminates

in this figure.

8
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Figure 13 gives the predicted and experimental (Reference 15) ulti-

mate failure strengths of AS-350l,,'O,90,+45). - laminate with D1W = .125

for partial loading of the hole. There exists a very good agreement

between the predicted and experimental values.

Tables 3-4 give the comparison between predicted and experimental

results for 0/W = .125. The Table 3 results are for AS-3501 material

(0,90 ,+45) s - laminate with four hole load to total load ratios. Experi-

mental strengths for this case have been taken from Reference 15 and show

a very good agreement with predicted strengths. Table 4 represents the

experimental and predicted results for three different laminates of T300/5208

material. Experimental strengths are taken from Reference 12. The effect

of some temperature and moisture contents is also included during strength

calculations in these cases (Reference 16). It is seen that the results

computed by using tensor polynomial failure criterion are conservative by

a factor fl, for dry room temperature; whereas this factor f 2 is little
less when some moisture and temperature change is introduced. However,

since in composites, we find a great deal of scatter in ultimate strengths

of laminates, it is not possible to get an exact agreement between the

predicted and experimental results. Hence the comparison shown in this

study is satisfactory.

The forthcoming example demonstrates the use of design plots (Figures

4-11) in practical situations.

5. EXAMPLE

Given a (0,90,(+45)2). - laminate of T300/5208 material with a

fastener hole. The hole diameter D is 5.08mm, width W of the laminate

is 25.4mm and thickness h is 4.572mm. Using the design plot 5 and the

strength of the unnotched laminate given in Table 2, compute the maximum

allowable load that can be applied at the hole.

1 9
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SOLUTION

1 T h

SD

Lmax

D = 5.08mm

W = 25.4mm

h = 4.572mm

No = 505 MPa (from Table 2)

= .102 x 505 kgf mm- 2

= 51.51 kgf mm- 2

D/W = .2

(L) = 1.05 (from Figure 5)
No

D/W=.2

P = 1.05 x 51.51 kgf mm- 2  (maximum allowable stress)

Lma x  x hx D

a 1256 kg

Thus the maximum allowable load at the fastener hole is 1256 kg.

10
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SECTION III

CONCLUS IONS

The ultimate failure strengths and modes of failure of different

composite laminates having a through the thickness loaded hole have been

predicted using finite element method coupled with classical laminated

plate theory and stress tensor polynomial failure criterion. The compari-

son between the predicted and experimental strengths is satisfactory.

Design plots showing the ultimate strengths and modes of failure for

various hole diameter to laminate width ratios are presented for a num-

ber of composite laminates made of T300/5208 material.
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AFWAL-TR-80-401 0

TABLE 1

MATERIAL PROPERTIES OF DIFFERENT

LAMINATES IN SI-UNITS

Q11t Q2  N{011I 1I2 Q22 Q66 0o

Laminate ( GPa ) (riPa)

(0,90,+45) 76.368 22.607 76.368 26.88 582

(0,90,(+45) 2) s  69.798 29.177 69.798 33.45 505

(0 ,+45) s 119.234 22.607 33.502 26.88 960

(902,+45)s  33.502 22.607 119.234 26.88 144

(0) 181.811 2.897 10.346 7.17 1500

(90) 10.346 2.897 181.811 7.17 40

(+45) 2s 56.658 42.318 56.658 46.59 123

(0,90) 2s 69.085 18.626 69.085 21.73 682

a xQ
12  :66]

y - QI2 Q22 0 E

8xy 0 0 Q66 Yxy
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TABLE 2

FAILURE STRENGTHS OF DIFFERENT LAMINATES

No NoC NoS

Tension Compression Shear
Laminate (HiPa) (ilPa) (IlPa)

00 1500 1500 68

900 40 246 68

+45 123 149 856

(02,90 2)s  0 682 1108 68

90 373 2269 68

(0 2+45)s  0 960 536 255

+45 515 664 494

(902 ,+45)s  90 115 603 255

+45 144 322 494

(0,90,+45) 0 582 565 255

90 276 1298 255

+45 347 575 494

(0,90,(+45)2 0 505 400 317

90 228 946 317

+45 288 484 615
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TABLE 3

COMPARISON BETWEEN EXPERIMENTAL AND PREDICTED
STRENGTHS OF (0,90,+45)s -AS-3501 LAMINATES D/W=.125

L P(ksi) P (ksi) fl
Lratio Predicted Experimental

0 30.2 +  40 +  1.32

0.1 211.75 280 1.32

0.2 182.74 260 1.42

1 83.25 112 1.35

*Lratio = Ratio of hole load to total load

+These values correspond to free hole case and
thus act at the edge of the laminate.
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TABLE 4

COMPARISON BETWEEN EXPERIMENTAL AND PREDICTED
STRENGTH RATIOS FOR T300/5208 LAMINATE, D/W-.125

P/No 0
P/No AT=-150 C P/No

Laminate 'T=C=O C=.005 Exp. f

(0,90,+45) 1.13 1.12 1.35 1.19 1.21- s

(02,+45)s  .33 .35 .72 2.18 2.06

(9021+45)s  1.51 1.67 2.63 1.74 1.57

fl = (P/No) /(P/No)AT=C=o
f Exp.

= (P/N)Exp./(P/No)AT=-150oC, C=.005
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L = 13.3 cm

h = 0.2032 cm

11 = 2.54 cm

E = 0.894 cm

D = 0.3175 to 0.9 cm

Figure 1. Laminate with Coordinate Axis and Dimensions
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Figure 5. Strength Ratio P/No versus Diameter to Width Ratio

D/W of the (0,90,(±45)2)s Laminate
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Figure 10. Strength Ratio P/N versus Diameter to Width Ratio
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Figure 11. Strength Ratio P/No0 versus Diameter to Width

Ratio D/W of the (90* ) Laminate
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Figure 14 (a). Projection of Failure Mode for (902,+45)s

Laminate, D/W = .125. Net Tension Failure.

35



AFWAL-TR-80-401 0

W/ 2

N -3. ON
(40)

D/2

I--X

Figure 14 (b). Projection of Failure Mode for (0)-Laminate,
D/W=.125. Tearing Off Failure.
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Figure 14 (c). Projection of Failure Load for ('02
Laminate, D/W - .125. Shear Out Failure.
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Figure 14 (d). Projection of Failure Mode for (900) Laminate,
D/W = .125. Net Tension Failure.
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Figure 14 (e). Projection of Failure Mode for (0,90,+45)s

Laminate, D/W = .125. Compressive Failure.

39

~ -. - U.S.overnment Pintng office: 1910 - 657-04727



4


